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Argonne Photosynthesis Group

Research Goal:
Light-induced Structural Dynamics 

in Natural and Bio-mimetic Photosynthesis
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Critical Parameters
Structure/Structural Dynamics Linked to Photochemistry:

� Donor-acceptor/cofactors
� Solvent/matrix
� Atomic re-organization linked to ET( λ )
� Relaxation events (energy conversion)

Fundamental for understanding ET and energy conversion



� Cofactor and adjacent local-site 
structures

� Long-range coupling to local-site 
probes

Argonne Photosynthesis Group
Light-induced Structural Dynamics in Natural and Bio-mimetic Photosynthesis

� Pulsed, multi-frequency EPR and 
associated techniques (ENDOR)

� EPR Spin-Probe Techniques
� Marion Thurnauer
� Oleg Poluektov
� Lisa Utschig

� Time-resolved synchrotron 
techniques 

� X-ray spectroscopy (XAFS, XANES)
� fs Transient Optical Techniques

� Lin Chen

� Time-resolved X-ray scattering 
� Molecular diffraction

� D. Tiede

� Excited-state 
photochemistry/structure

� Metal-centered Chromophores/co-
factors

� Global structure
� Conformational ensembles
� Solvent interface            

Approach Resolution range
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Supramolecular Photochemical Architectures: 

Supra-
molecular 
Chemistry

Nanoscale
Hybrid
Architectures

Synthetic Photochemical Architectures Biological Photosynthesis

J. Hupp, S. T. Nguyen, R. Snurr

J. LindseyF. Lewis
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ST. Rajh
N. Dimitrijevic
P. Zapol

M. Wasielewski

ANL-CHM Nanoscience
A. Goshe



Direct Methods For Supramolecular Structure and ET-Linked 
Structure Change in Liquids:

� Crystallography

� NMR

� Molecular Dynamics

New Approach:

Molecular Diffraction in Solution
� Generally Applicable

- inorganic, organic, biological
� Direct, Quantitative: Correlate to Coordinate Models 

- distinguish Crystal, NMR, MD models
� High Time-resolution

~ 100 ps current (3rd generation) synchrotron
<  100 fs 4th generation light source



Coordinate-based X-ray Scattering: Orientationally-averaged 
Interference From All Atom Pairs

Scattering = FT (Pair distance distribution function)

2θ)
q

q = (4π/λ)sin(θ)

Calculate from crystallographic atomic form factors:

Debye equation



Simulated Scattering for Au55 Architectures

X-ray Scattering of Mono-
disperse systems reveals: 

- size

- shape 

-internal structure of 
particles

-interparticle relationships

Andrew Goshe

10 Å

Au55 supramolecular 
dimensions (d ~ 10 Å)



X-ray Scattering TiO2 Nanoparticle (supramolecular dimensions) in 
Liquids

d = 45 Å

Andy Goshe
Zoran Saponjic
Tijana Rajh

r = 1.0 Ǻ

Experimental pattern reveals internal crystalline structure for nanoparticle,
What about comparable experiments with molecules?

Anatase Nanoparticle



One Set of Lindsey Compounds:
Diphenylethyne Linked Multimeric Porphyrin Arrays

Yu, L. and Lindsey, J.S. (2001) J. Org. 
Chem. 66:7402

� Models for Light-harvesting

� Building blocks 
> artificial photosynthesis
> sensors
> catalysis

� Structure not determined



Scattering & Solution Diffraction for Porphyrin Wheel Architecture

� Calculation:
� Scattering 
� Interference = molecular diffraction 

(due to internal structure)

� Experiment (in toluene):
� Scattering
� Molecular diffraction (peak shifts, 

damped amplitudes) 



Cyclic Porphyrin Hexamer Assemblies

Host Host-Guest

� Measured Scattering for Porphyrin 
Assembly in Toluene to 4.5 Å Resolution 
(shown 7.8 Å resolution)

� Guest-Host Scattering Generally
Consistent With Designed Structure

� Differences (Exp vs Model) Give Info on 
Molecular Structure

1 1+2

300 62.8 7.8
r (Å)



PDF Analysis Porphyrin Wheel Architectures

Energy Minimized Models 
(Lin Chen)

Host

Host-Guest

PDF Models

PDF Experiments

Host
Host-Guest

7.8 Å Resolution XS Data :

� Resolved Porphyrin PDF: 
�Cyclic Structure

� Host PDF Peak 1.5 Å
Shorter than Model

� Insert Guest: Slight (0.6 Å) 
Expansion 

�Exp ~ Model

� Major Differences PDF 
Width/Dispersion

� Host-Guest Narrower 
Dispersion

Host

Host-Guest
Experiment



Damping of Porphyrin Wheel Diffraction by  Rigid-Body Motion

Damping of Molecular Diffraction 
Measure Configurational Dispersion

Data Allows
� Up to 3 Å Translational Disorder
� Full Rotational Disorder
� Defines Conformational Envelope

Translation

Rotation

<u>
<θ>

Ruitian Zhang



Solution Diffraction of Cyclic Porphyrin Architectures 

Measured Solution Structure:

� Molecular architecture 
� Characteristic PDF = Cyclic 

Architecture

� Equilibrium Conformation
� Host Array Centered on 1.5 Å

Shortened �Puckered� Conformation

� Host-Guest Array Expanded, Close 
to Model Conformer 

� Configurational Envelope: 
Amplitude of Configuration 
Dispersion

� Host Array �Floppy�: 
�< 3 Å translational dispersion, 
�Full rotational dispersion

� Host-Guest ~2x Smaller Dispersion



Connection: 
Molecular Diffraction Amplitudes-Conformational Dispersion

MD Numerical Model:
Porphyrin/Linker Bowing
Porphyrin Group Rotation 

Rigid-Body Analytical Approximation : 
Porphyrin Group Translation
Porphyrin Group Rotation

Snapshots of individual conformers within a 1ns MD Simulation:

Lin Chen

New Opportunity-
Measure Conformational Dispersion for Molecules in Solution:
� Paramertize dampening in terms rigid-body motions
� Quantitative comparison to MD:

- Calculate scattering for conformational ensemble



Supramolecular Architectures based on Coordination Chemistry 
Joseph Hupp, Northwestern University

Building Blocks:
> photochemistry/conversion
> catalysis
> photonics
> separations

2.5 Å

� Exp Scattering Amplitudes 
Comparable to Calc

� Homogeneous, Rigid 
Assemblies

� Exp Scattering Amplitudes 
Not Instrumentally Limited

Molecular Square
In Solution



Bipyridyl Squares: Comparison to Models

Crystal: Puckered

Crystal: Planar

Energy Minimized Model

Jodi O�Donnell

r = 2 Å →

High-resolution diffraction with configurationally constrained molecules



Supramolecular Diffraction in Solution

Measure of Structure in Solution :

� Equilibrium Conformation

� Conformational Dispersion

� Solvent Packing, Structure 
Molecular/Solvent Interface, Site-
Specific vdw Volumes

� Time-Resolved, Reaction-linked 
Structural Change



Time-Resolved, Reaction-linked Structure Change
(work in progress)

D+ A-hνD A

Model, well-defined matrix for ET

Sa
AAAGAA

TTTCTT
Sa

AAAGAA

TTTCTT
+ -DNA

F. Lewis
X. Zuo

M. Wasielewski

+ -
Reaction
Centers

+ -Nano
Hybrids

T. Rajh
N. Dimitrijevic
P. Zapol



DNA Molecular Diffraction

Fiber Diffraction

Franklin and 
Gosling, 
Acta Crystallog. 
1953, 6:673

Zuo, Lewis, Tiede, 
Airlie House, 
2004

Solution Diffraction

Xiaobing Zuo
DNA Structure



General Characters of DNA Molecular DiffractionGeneral Characters of DNA Molecular Diffraction

d

Base Rise

Separation of π-stacked bases potentially 
significant for molecular wire properties



DNA Structure in Crystal & Solution:DNA Structure in Crystal & Solution:
Dickerson DNADickerson DNA

dna1:dna1:
CGCGAATTCGCGCGCGAATTCGCG

dna2:dna2:
CGCTAGCGCGCTAGCG

cryst. model: bdl001
NMR  model: 1duf

cryst. model: 250d
NMR  model: 1g7z

Sequence Matters-
For details of structure/dynamics



ET Spacer Sequences: (ET Spacer Sequences: (AA)AA)nn vsvs ((AT)AT)nn
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ET Spacer Sequences: (ET Spacer Sequences: (AA)AA)nn vsvs ((AT)AT)nn::
Comparison to Crystallographic and NMR ModelsComparison to Crystallographic and NMR Models
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T

A

T

A

T

A
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(AA)n (AT)n

� Distinguish crystallographic and NMR models
� Evaluate applicability to solution state



ET Spacer Sequences: (ET Spacer Sequences: (AA)AA)nn vsvs ((AT)AT)nn::
Comparison to MD EnsemblesComparison to MD Ensembles

2ns Amber
(AA)5
(AA)10  (AT)10

Xiaobing Zuo
P. Zapol
Guanglei Cui
K. Merz

� MD ensembles good match for (AT)n not (AA)n

� MD force-field skewed to (AT)n conformation

� (AA)n conformers found in MD sub-sets 

� Experimental guide to refine force-field



Supramolecular Diffraction in Solution

Coordinate-based Comparison of Molecular 
Models :

� Crystal

� NMR

� MD

� Time-Resolved, Reaction-linked 
Structural Change



Conwell, Esther: 
Top. Curr. Chem. (2004) 237:73�101

MM Prediction of HoleMM Prediction of Hole--injection Structural Changeinjection Structural Change

A A A A G A A A A

T T T T C T T T T

A A A A G A A A A

T T T T C T T T T
+

Solution Molecular Diffraction Experiments Have Sensitivity to Detect 
Predicted Structure (lattice strain) Change

Xiaobing Zuo



New Opportunities for Time-Resolved Structure Analyses Using Laser 
Pump-Synchrotron Probe

XAFS Experiment:
(Lin Chen et. al. 2001 Science 292:262)

X-ray Scattering Experiment:

Product State

Ground State

Product State

Transient Porphyrin Photochemistry:
Lin Chen



Time-Resolved, Molecular Diffraction Measurements

1

10

100

co
un

ts

q (A-1)

2 µs

Calculated 

Experiment: 
2 µs pulse

APS Timing Modes:

Single bunch

Shutter window
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Effect of Scaling vdw Volumes on Calculated Scattering

Model:

� Atomic vdw Volumes Affect Scattering via �Contrast�, Scattering Amplitudes
� Atomic vdw Effect Distinguishable Dynamic Effects
� Detailed Modeling Opportunity to Identify �Site-Specific� Solvent Packing



High-Angle X-ray Scattering

New Opportunity to Quantitatively Explore Molecular Structure 
In Liquids:

� Molecular architecture and conformation
Quantitative test of crystal, NMR, or other coordinate models

� Dynamics
Quantitative tests of MD simulations

� Solvent Packing, Structure Molecular/Solvent Interface, Site-
Specific vdw Volumes

Especially, with small, conformationally restricted assemblies:
significant for understanding chemistry

� Time-resolved, Reaction-Linked Structure Re-organization



Modeling Effect of Rigid-Body Motions on Wide-Angle X-ray Scattering

Break Macromolecule into Fragments:

Introduce Fragment Thermal Factor:

Weighting describes coherence in fragment 
positions in terms rms amplitude, u

( Zhang et al. (1999) Langmuir 15:7510 ; Tiede et al. JACS submitted)


